Учебник соответствует федеральным компонентам государственного стандарта общего образования по математике и содержит материал как для базового, так и для профильного уровня. По нему можно работать независимо от того, по каким учебникам учились школьники в предыдущие годы.
Учебник нацелен на подготовку учащихся к поступлению в вузы.
ОГЛАВЛЕНИЕ
ГЛАВА I. КОРНИ, СТЕПЕНИ, ЛОГАРИФМЫ
§ 1. Действительные числа 3
1.1. Понятие действительного числа 3
1.2. Множества чисел. Свойства действительных чисел . ... 10
1.3*. Метод математической индукции 16
1.4. Перестановки 22
1.5. Размещения 25
1.6. Сочетания 27
1.7*. Доказательство числовых неравенств 30
1.8*. Делимость целых чисел 35
1.9*. Сравнения по модулю т 38
1.10*. Задачи с целочисленными неизвестными 40
§ 2. Рациональные уравнения и неравенства 44
2.1. Рациональные выражения 44
2.2. Формулы бинома Ньютона, суммы и разности степеней . . 48
2.3*. Деление многочленов с остатком. Алгоритм Евклида ... 53
2.4*. Теорема Безу 57
2.5*. Корень многочлена 60
2.6. Рациональные уравнения 65
2.7. Системы рациональных уравнений 70
2.8. Метод интервалов решения неравенств 75
2.9. Рациональные неравенства 79
2.10. Нестрогие неравенства 84
2.11. Системы рациональных неравенств 88
§ 3. Корень степени n 93
3.1. Понятие функции и ее графика 93
3.2. Функция у = х" 96
3.3. Понятие корня степени п 100
3.4. Корни четной и нечетной степеней 102
3.5. Арифметический корень 106
3.6. Свойства корней степени л 111
3.7*. Функция у = nх (х > 0) 114
3.8*. Функция у = nVx 117
3.9*. Корень степени п из натурального числа 119
§ 4. Степень положительного числа 122
4.1. Степень с рациональным показателем 122
4.2. Свойства степени с рациональным показателем 125
4.3. Понятие предела последовательности 131
4.4*. Свойства пределов 134
4.5. Бесконечно убывающая геометрическая прогрессия . . . 137
4.6. Число е 140
4.7. Понятие степени с иррациональным показателем .... 142
4.8. Показательная функция 144
§ 5. Логарифмы 148
5.1. Понятие логарифма 148
5.2. Свойства логарифмов 151
5.3. Логарифмическая функция 155
5.4*. Десятичные логарифмы 157
5.5*. Степенные функции 159
§ 6. Показательные и логарифмические уравнения и неравенства . . 164
6.1. Простейшие показательные уравнения 164
6.2. Простейшие логарифмические уравнения 166
6.3. Уравнения, сводящиеся к простейшим заменой неизвестного 169
6.4. Простейшие показательные неравенства 173
6.5. Простейшие логарифмические неравенства 178
6.6. Неравенства, сводящиеся к простейшим заменой неизвестного 182
Исторические сведения 187
ГЛАВА II. ТРИГОНОМЕТРИЧЕСКИЕ ФОРМУЛЫ. ТРИГОНОМЕТРИЧЕСКИЕ ФУНКЦИИ
§ 7. Синус и косинус угла 193
7.1. Понятие угла 193
7.2. Радианная мера угла 200
7.3. Определение синуса и косинуса угла 203
7.4. Основные формулы для sin а и cos a 211
7.5. Арксинус 216
7.6. Арккосинус 221
7.7*. Примеры использования арксинуса и арккосинуса .... 225
7.8*. Формулы для арксинуса и арккосинуса 231
§ 8. Тангенс и котангенс угла 233