Поиск на сайте



Алгебра и начала математического анализа. 11 класс. Учебник. Никольский С.М. и др. Базовый и профильный уровни

679.jpg
Учебник соответствует федеральным компонентам государственного стандарта общего образования по математике и содержит материал как для базового, так и для профильного уровня. По нему можно работать независимо от того, по каким учебникам учились школьники в предыдущие годы.
Учебник нацелен на подготовку учащихся к поступлению в вузы.

ОГЛАВЛЕНИЕ
ГЛАВА I. ФУНКЦИИ. ПРОИЗВОДНЫЕ. ИНТЕГРАЛЫ
§ 1. Функции и их графики 3
1.1. Элементарные функции 3
1.2. Область определения и область изменения функции. Ограниченность функции 5
1.3. Четность, нечетность, периодичность функций 8
1.4. Промежутки возрастания, убывания, знакопостоянства и нули функции 14
1.5. Исследование функций и построение их графиков элементарными методами 18
1.6. Основные способы преобразования графиков 21
1.7*. Графики функций, содержащих модули 34
1.8*. Графики сложных функций 39
§ 2. Предел функции и непрерывность 45
2.1. Понятие предела функции 45
2.2. Односторонние пределы 49
2.3. Свойства пределов функций 56
2.4. Понятие непрерывности функции 60
2.5. Непрерывность элементарных функций 65
2.6. Разрывные функции 67
§ 3. Обратные функции 72
3.1. Понятие обратной функции 72
3.2*. Взаимно обратные функции 75
3.3*. Обратные тригонометрические функции 80
3.4*. Примеры использования обратных тригонометрических функций 85
§ 4. Производная 89
4.1. Понятие производной 89
4.2. Производная суммы. Производная разности 96
4.3*. Непрерывность функции, имеющей производную. Дифференциал 99
4.4. Производная произведения. Производная частного .... 101
4.5. Производные элементарных функций 103
4.6. Производная сложной функции 108
4.7*. Производная обратной функции 111
§ 5. Применение производной 114
5.1. Максимум и минимум функции 114
5.2. Уравнение касательной 121
5.3. Приближенные вычисления 125
5.4*. Теоремы о среднем 127
5.5. Возрастание и убывание функции 129
5.6. Производные высших порядков 134
5.7*. Выпуклость графика функции 137
5.8*. Экстремум функции с единственной критической точкой . 141
5.9. Задачи на максимум и минимум 145
5.10*. Асимптоты. Дробно-линейная функция 149
5.11. Построение графиков функций с применением производных 156
5.12*. Формула и ряд Тейлора 162
§ 6. Первообразная и интеграл 167
6.1. Понятие первообразной 167
6.2*. Замена переменной. Интегрирование по частям 173
6.3. Площадь криволинейной трапеции 175
6.4. Определенный интеграл 178
6.5*. Приближенное вычисление определенного интеграла . . . 181
6.6. Формула Ньютона — Лейбница 185
6.7. Свойства определенного интеграла 191
6.8*. Применение определенных интегралов в геометрических и физических задачах 196
6.9*. Понятие дифференциального уравнения 202
6.10*. Задачи, приводящие к дифференциальным уравнениям . . 206
Исторические сведения 212
ГЛАВА II. УРАВНЕНИЯ. НЕРАВЕНСТВА. СИСТЕМЫ
§ 7. Равносильность уравнений и неравенств 214
7.1. Равносильные преобразования уравнений 214
7.2. Равносильные преобразования неравенств 219
§ 8. Уравнения-следствия 225
8.1. Понятие ур
Оценить материал
★★★★★
2 оценок

Ссылка, чтобы скачать или посмотреть онлайн: